DSpace@Çankaya

Mellin transform for fractional integrals with general analytic kernel

Basit öğe kaydını göster

dc.contributor.author Rashid, Maliha
dc.contributor.author Kalsoom, Amna
dc.contributor.author Sager, Maria
dc.contributor.author Inc, Mustafa
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Alshomrani, Ali S.
dc.date.accessioned 2024-04-25T07:31:28Z
dc.date.available 2024-04-25T07:31:28Z
dc.date.issued 2022
dc.identifier.citation Rashid, Maliha;...et.al. (2022). "Mellin transform for fractional integrals with general analytic kernel", AIMS Mathematics, Vol.7, No.5, pp.9443-9462. tr_TR
dc.identifier.issn 24736988
dc.identifier.uri http://hdl.handle.net/20.500.12416/7924
dc.description.abstract Many different operators of fractional calculus have been proposed, which can be organized in some general classes of operators. According to this study, the class of fractional integrals and derivatives can be classified into two main categories, that is, with and without general analytical kernel (introduced in 2019). In this article, we define the Mellin transform for fractional differential operator with general analytic kernel in both Riemann-Liouville and Caputo derivatives of order ς ≥ 0 and ϱ be a fixed parameter. We will also establish relation between Mellin transform with Laplace and Fourier transforms. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.3934/math.2022524 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Caputo Fractional Derivative tr_TR
dc.subject Fractional Integrals tr_TR
dc.subject Laplace And Fourier Transforms tr_TR
dc.subject Mellin Transform tr_TR
dc.title Mellin transform for fractional integrals with general analytic kernel tr_TR
dc.type article tr_TR
dc.relation.journal AIMS Mathematics tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 7 tr_TR
dc.identifier.issue 5 tr_TR
dc.identifier.startpage 9443 tr_TR
dc.identifier.endpage 9462 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster