dc.contributor.author |
Kader, Abass H. Abdel
|
|
dc.contributor.author |
Latif, Mohamed. S. Abdel
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2024-04-25T07:34:13Z |
|
dc.date.available |
2024-04-25T07:34:13Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
Kader, Abass H. Abdel; Latif, Mohamed. S. Abdel; Baleanu, D. (2022). "Studying Heat Conduction In A Sphere Considering Hybrid Fractional Derivative Operator", Thermal Science, Vol.26, No.2, pp.1675-1683. |
tr_TR |
dc.identifier.issn |
03549836 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/7943 |
|
dc.description.abstract |
In this paper, the fractional heat equation in a sphere with hybrid fractional derivative operator is investigated. The heat conduction is considered in the case of central symmetry with heat absorption. The closed form solution in the form of three parameter Mittag-Leffler function is obtained for two Dirichlet boundary value problems. The joint finite sine Fourier-Laplace transform is used for solving these two problems. The dynamics of the heat transfer in the sphere is illustrated through some numerical examples and figures |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.2298/TSCI200524332K |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Finite Fourier Transform |
tr_TR |
dc.subject |
Heat Conduction With Absorption |
tr_TR |
dc.subject |
Hybrid Fractional Derivative Operator |
tr_TR |
dc.subject |
Laplace Transform |
tr_TR |
dc.subject |
Three Parameter Mittag-Leffler Function |
tr_TR |
dc.title |
Studying Heat Conduction In A Sphere Considering Hybrid Fractional Derivative Operator |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Thermal Science |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
26 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
1675 |
tr_TR |
dc.identifier.endpage |
1683 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |