DSpace Repository

On nabla conformable fractional Hardy-type inequalities on arbitrary time scales

Show simple item record

dc.contributor.author El-Deeb, Ahmed A.
dc.contributor.author Makharesh, Samer D.
dc.contributor.author Nwaeze, Eze R
dc.contributor.author Iyiola, Olaniyi S.
dc.contributor.author Baleanu, Dumitru
dc.date.accessioned 2024-04-29T12:23:08Z
dc.date.available 2024-04-29T12:23:08Z
dc.date.issued 2021
dc.identifier.citation El-Deeb, Ahmed A.;...et.al. (2021). "On nabla conformable fractional Hardy-type inequalities on arbitrary time scales", Journal of Inequalities and Applications, Vol.2021, No.1. tr_TR
dc.identifier.issn 10255834
dc.identifier.uri http://hdl.handle.net/20.500.12416/8066
dc.description.abstract The main aim of the present article is to introduce some new ∇-conformable dynamic inequalities of Hardy type on time scales. We present and prove several results using chain rule and Fubini’s theorem on time scales. Our results generalize, complement, and extend existing results in the literature. Many special cases of the proposed results, such as new conformable fractional h-sum inequalities, new conformable fractional q-sum inequalities, and new classical conformable fractional integral inequalities, are obtained and analyzed. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1186/s13660-021-02723-7 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Calculus On Time Scales tr_TR
dc.subject Conformable Nabla Derivative tr_TR
dc.subject Conformable Nabla Integral tr_TR
dc.subject Fractional Calculus tr_TR
dc.subject Hardy’s Inequality tr_TR
dc.title On nabla conformable fractional Hardy-type inequalities on arbitrary time scales tr_TR
dc.type article tr_TR
dc.relation.journal Journal of Inequalities and Applications tr_TR
dc.contributor.authorID 56389 tr_TR
dc.identifier.volume 2021 tr_TR
dc.identifier.issue 1 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record