Abstract:
Throughout this article, generalizations of some Grónwall–Bellman integral inequalities for two real-valued unknown functions in n independent variables are introduced. We are looking at some novel explicit bounds of a particular class of Young and Pachpatte integral inequalities. The results in this paper can be utilized as a useful way to investigate the uniqueness, boundedness, continuousness, dependence and stability of nonlinear hyperbolic partial integro-differential equations. To highlight our research advantages, several implementations of these findings will be presented. Young’s method, which depends on a Riemann method, will follow to prove the key results. Symmetry plays an essential role in determining the correct methods for solving dynamic inequalities.