dc.contributor.author |
Muslih, Sami I.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Rabei, Eqab
|
|
dc.date.accessioned |
2016-04-01T08:32:31Z |
|
dc.date.available |
2016-04-01T08:32:31Z |
|
dc.date.issued |
2006-05 |
|
dc.identifier.citation |
Muslih, S.I., Baleanu, D., Rabei, E. (2006). Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives. Physica Scripta, 73(5), 436-438. http://dx.doi.org/10.1088/0031-8949/73/5/003 |
tr_TR |
dc.identifier.issn |
0031-8949 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/811 |
|
dc.description.abstract |
The fractional Hamiltonian formulation and the fractional path integral quantization of fields are analysed. Dirac and Schrodinger fields are investigated in detail |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Royal Swedish Acad Sciences |
tr_TR |
dc.relation.isversionof |
10.1088/0031-8949/73/5/003 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Variational-Problems |
tr_TR |
dc.subject |
Sequential Mechanics |
tr_TR |
dc.subject |
Linear Velocities |
tr_TR |
dc.subject |
Equations |
tr_TR |
dc.subject |
Systems |
tr_TR |
dc.title |
Hamiltonian formulation of classical fields within Riemann-Liouville fractional derivatives |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Physica Scripta |
tr_TR |
dc.identifier.volume |
73 |
tr_TR |
dc.identifier.issue |
5 |
tr_TR |
dc.identifier.startpage |
436 |
tr_TR |
dc.identifier.endpage |
438 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |