dc.contributor.author |
Yüceer, Ümit
|
|
dc.date.accessioned |
2024-05-02T11:52:53Z |
|
dc.date.available |
2024-05-02T11:52:53Z |
|
dc.date.issued |
2006-01 |
|
dc.identifier.citation |
Yüceer, Ümit (2006). "The equivalence of discrete convexity and the classical definition of convexity", International Mathematical Forum, No.7, pp.299-308. |
tr_TR |
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/8124 |
|
dc.description.abstract |
This article presents a proof of the fact that the classical definition of convexity of nondecreasing (increasing) first forward differences for discrete univariate functions is actually a special case of the concept of discrete convexity for functions defined on a discrete space. Consequently proving the discrete convexity of separable functions is simplified and becomes simply showing each univariate function is convex in the classical sense. An illustrative example is provided. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Discrete Convexity |
tr_TR |
dc.subject |
First Forward Difference |
tr_TR |
dc.subject |
Seperable Function |
tr_TR |
dc.title |
The equivalence of discrete convexity and the classical definition of convexity |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
International Mathematical Forum |
tr_TR |
dc.identifier.issue |
7 |
tr_TR |
dc.identifier.startpage |
299 |
tr_TR |
dc.identifier.endpage |
308 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü |
tr_TR |