Abstract:
The primary objective of this research is to extend the concept of fractionalized Casson fluid flow. In this study, a comprehensive analysis of magnetohydrodynamic (MHD) natural convective flow of Casson fluid is conducted, focusing on obtaining analytical solutions using the non-integer-order derivative known as the Yang–Abdel-Aty–Cattani (YAC) operator. The YAC operator utilized in this research possesses a more generalized exponential kernel. The fluid flow is examined in the vicinity of an infinitely vertical plate with a characteristic velocity denoted as u80. The mathematical modelling of the problem incorporates partial differential equations, incorporating Newtonian heating and ramped conditions. To facilitate the analysis, a suitable set of variables is introduced to transform the governing equations into a dimensionless form. The Laplace transform (LT) is then applied to the fractional system of equations, and the obtained results are presented in series form and also expressed in terms of special functions. The study further investigates the influence of relevant parameters, such as α, β, Pr, Q, Gr, M, Nr and K, on the fluid flow to reveal interesting findings. A comparison of different approaches reveals that the YAC method yields superior results compared to existing operators found in the literature. Graphs are generated to illustrate the outcomes effectively. Additionally, the research explores the limiting cases of the Casson and viscous fluid models to derive the classical form from the YAC fractionalized Casson fluid model. © 2024 Sciendo. All rights reserved.