Özet:
In this paper, under some conditions in the Banach space C([0; beta];R), we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space C([0; beta];R). Also, we propose an e ffective and e fficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.