Abstract:
The solutions of systems of fractional differential equations depend on the type of the fractional derivative used in the system. In this paper, we present in closed forms the solutions of linear systems involving the modified Atangana–Baleanu derivative that has been introduced recently. For the nonlinear systems, we implement a numerical scheme based on the collocation method to obtain approximate solutions. The applicability of the results is tested through several examples. We emphasize here that certain systems with the Atangana–Baleanu derivative admit no solutions which is not the case with the modified derivative.