dc.contributor.author |
Murugesan, Meganathan
|
|
dc.contributor.author |
Santra, Shyam Sundar
|
|
dc.contributor.author |
Jayanathan, Leo Amalraj
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2024-06-13T11:45:46Z |
|
dc.date.available |
2024-06-13T11:45:46Z |
|
dc.date.issued |
2024 |
|
dc.identifier.citation |
Murugesan, Meganathan...et al. (2024). "Numerical analysis of fractional order discrete Bloch equations", Journal of Mathematics and Computer Science, Vol. 32, No. 3, pp. 222-228. |
tr_TR |
dc.identifier.issn |
2008-949X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/8495 |
|
dc.description.abstract |
By defining a new kind of h-extorial function with constant coefficient, this research seeks to solve discrete fractional Bloch equations. By using an extorial function of the Mittag-Leffler type, we are able to discover the general solutions for the magnetization’s Bx, By, and Bz components. These findings demonstrate the innovative method of fractional order Bloch equations. In addition, we offer a graphical representation of our results. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.22436/jmcs.032.03.03 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Bloch Equation |
tr_TR |
dc.subject |
Caputo Derivative |
tr_TR |
dc.subject |
Difference Equation |
tr_TR |
dc.subject |
Discrete Laplace Transform |
tr_TR |
dc.subject |
Fractional Derivative |
tr_TR |
dc.subject |
Numerical Analysis |
tr_TR |
dc.title |
Numerical analysis of fractional order discrete Bloch equations |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Mathematics and Computer Science |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
32 |
tr_TR |
dc.identifier.issue |
3 |
tr_TR |
dc.identifier.startpage |
222 |
tr_TR |
dc.identifier.endpage |
228 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |