dc.contributor.author |
Rabei, Eqab M.
|
|
dc.contributor.author |
Nawafleh, Khaled I.
|
|
dc.contributor.author |
Hijjawi, Raed S.
|
|
dc.contributor.author |
Muslih, Sami I.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2016-04-06T12:13:05Z |
|
dc.date.available |
2016-04-06T12:13:05Z |
|
dc.date.issued |
2007-03-15 |
|
dc.identifier.citation |
Rabei, E.M...et al. (2007). The Hamilton formalism with fractional derivatives. Journal of Mathematical Analysis and Applications, 327(2), 891-897. http://dx.doi.org/10.1016/j.jmaa.2006.04.076 |
tr_TR |
dc.identifier.issn |
0022-247X |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/852 |
|
dc.description.abstract |
Recently the traditional calculus of variations has been extended to be applicable for systems containing fractional derivatives. In this paper the passage from the Lagrangian containing fractional derivatives to the Hamiltonian is achieved. The Hamilton's equations of motion are obtained in a similar manner to the usual mechanics. In addition, the classical fields with fractional derivatives are investigated using Hamiltonian formalism. Two discrete problems and one continuous are considered to demonstrate the application of the formalism, the results are obtained to be in exact agreement with Agrawal's formalism |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Academic Press Inc Elsevier Science |
tr_TR |
dc.relation.isversionof |
10.1016/j.jmaa.2006.04.076 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Fractional Derivatives |
tr_TR |
dc.subject |
Lagrangian and Hamiltonian Formulation |
tr_TR |
dc.title |
The Hamilton formalism with fractional derivatives |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of Mathematical Analysis and Applications |
tr_TR |
dc.identifier.volume |
327 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
891 |
tr_TR |
dc.identifier.endpage |
897 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |