dc.contributor.author |
Umul, Yusuf Ziya
|
|
dc.date.accessioned |
2016-04-12T10:47:53Z |
|
dc.date.available |
2016-04-12T10:47:53Z |
|
dc.date.issued |
2008-11 |
|
dc.identifier.citation |
Umul, Y.Z. (2008). Young-Kirchhoff-Rubinowicz theory of diffraction in the light of Sommerfeld's solution. Journal of the Optical Society of America A-Optics Image Science and Vision, 25(11), 2734-2742. http://dx.doi.org/10.1364/JOSAA.25.002734 |
tr_TR |
dc.identifier.issn |
1084-7529 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/894 |
|
dc.description.abstract |
Kirchhoff's theory of diffraction is derived by transforming the exact solution of Sommerfeld into surface integrals for the half-plane problem. It is shown that the exact solution directly yields the integral theorem of Kirchhoff in the context of the modified diffraction theory of Kirchhoff. The line integrals of Young-Rubinowicz are also derived by considering the rigorous solution of the reflected scattered fields for grazing incidence |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Optical Soc Amer |
tr_TR |
dc.relation.isversionof |
10.1364/JOSAA.25.002734 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Evanescent Plane-Waves |
tr_TR |
dc.subject |
Physical Optics |
tr_TR |
dc.subject |
Half-Plane |
tr_TR |
dc.subject |
Integral-Representation |
tr_TR |
dc.subject |
Edge |
tr_TR |
dc.subject |
Singularity |
tr_TR |
dc.subject |
Aperture |
tr_TR |
dc.subject |
Wedge |
tr_TR |
dc.title |
Young-Kirchhoff-Rubinowicz theory of diffraction in the light of Sommerfeld's solution |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Journal of the Optical Society of America A-Optics Image Science and Vision |
tr_TR |
dc.contributor.authorID |
42699 |
tr_TR |
dc.identifier.volume |
25 |
tr_TR |
dc.identifier.issue |
11 |
tr_TR |
dc.identifier.startpage |
2734 |
tr_TR |
dc.identifier.endpage |
2742 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Mühendislik Fakültesi, Elektronik ve Haberleşme Mühendisliği |
tr_TR |