dc.contributor.author |
Fisher, Brian
|
|
dc.contributor.author |
Taş, Kenan
|
|
dc.date.accessioned |
2016-04-27T08:10:24Z |
|
dc.date.available |
2016-04-27T08:10:24Z |
|
dc.date.issued |
2007-10 |
|
dc.identifier.citation |
Fisher, B., Taş, K. (2007). Commutative convolution of functions and distributions. Integral Transforms & Special Functions, 18(10), 689-697. http://dx.doi.org/10.1080/10652460600935965 |
tr_TR |
dc.identifier.issn |
1065-2469 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/911 |
|
dc.description.abstract |
The commutative convolution f * g of two distributions f and g in D' is defined as the limit of the sequence {(f tau(n)) * (g tau(n))}, provided the limit exists, where {tau(n)} is a certain sequence of functions tn in D converging to 1. It is proved that
|x|(lambda) * (sgn x|x|(-lambda-1)) = pi[cot (pi lambda) - cosec(pi lambda)] sgn x|x|(0),
for lambda not equal 0, +/- 1, +/- 2, ... , where B denotes the Beta function |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Taylor&Francis Inc |
tr_TR |
dc.relation.isversionof |
10.1080/10652460600935965 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Distribution |
tr_TR |
dc.subject |
Dirac Delta Function |
tr_TR |
dc.subject |
Convolution |
tr_TR |
dc.title |
Commutative convolution of functions and distributions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Integral Transforms & Special Functions |
tr_TR |
dc.contributor.authorID |
4971 |
tr_TR |
dc.identifier.volume |
18 |
tr_TR |
dc.identifier.issue |
10 |
tr_TR |
dc.identifier.startpage |
689 |
tr_TR |
dc.identifier.endpage |
697 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |