Abstract:
Artificial neural networks (ANNs) based on the use of principal components and the original absorbance data were proposed for the simultaneous quantitative analysis of amlodipine (AML) and atorvastatin (ATO) in tablets. A concentration set of mixtures containing ATO and AML in different concentration composition between 0.0-20.0 mu g/mL was prepared in methanol. The measured absorbance data matrix for the concentration data set was obtained and the principal components were extracted. In the next step five principal components were selected as an input data for the artificial neural network. This combined approach was named principal components-artificial neural network (PCA-ANN). The same problem was solved by using the application of the artificial neural network to the original absorbance data matrix. This approach was denoted as ANN. The classical ANN approach was used as a comparison method. Both PCA-ANN and ANN methods were tested by analyzing various synthetic mixtures corresponding to the validation set of AML and ATO compounds. The proposed methods were successfully applied to the quantitative analysis of the commercial tablets and a coincidence was reported between the proposed methods